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The Crystal Structure of 9,9,10,10-Tetrachloro-9,10-dihydroanthracene

By N.F.YANNONI AND J. SILVERMAN
Crystallography Section, Energetics Branch, Space Physics Laboratory, Air Force Cambridge Research Laboratories,
Bedford, Massachusetts, U.S.A.

(Received 23 September 1965 and in revised form T January 1966)

9,9,10,10-Tetrachloro-9,10-dihydroanthracene, C14HsCly, crystallizes in the monoclinic space group

C2/m. The unit-cell dimensions are a=10-93, 5=13-90, c=9-89 A

, B=116-2°, The crystal structure has

been determined by three-dimensional X-ray analysis and refined to an R index of 13-0 % by the method

of least-squares.

The molecular packing is characterized by a dovetailed arrangement in which parallel pairs of
crystallographically independent molecules assume orientations rotated with respect to each other by
90°. In general, the bond distances and angles of the independent molecules are identical within exper-
imental error and are close to expected values. Intramolecular overcrowding between chlorine and
hydrogen atoms forces the carbon framework of both molecules into essentially a planar configuration
and hence into a strained conformation for the central cyclohexa-1,4-diene rings.

Introduction

As part of a program designed to characterize new
organic semiconductors and photoconductors, the crys-
tal structures of representative compounds prepared
in these laboratories are being determined. 9,9,10,10-
Tetrachloro-9,10-dihydroanthracene (TCA), synthe-
sized in this regard, is also of inherent chemical interest
with respect to the effect of halogen substitution on the
conformation of the central cyclohexa-1,4-diene ring
(Yannoni, Krukonis & Silverman, 1964).

Experimental

Cream-colored crystals prepared by the method of
Meyer & Zahn (1913) provided the specimen selected
for the X-ray analysis. This was rod-shaped, length
1:3 mm and average diameter 0-1 mm.

The chemical and crystallographic data are as fol-
lows:

C14HsCly; M=317-8; m.p. 153-157°C.

Monoclinic:

a=1093+0-04, b=13-90+0:03, c=9-89 + 0-02 A,
p=116240-1; V=1348 A3; Z=4.

Density data: Deaje (Z=4)=1-565 g.cm=3, Dops=

1-55 g.cm~3 (flotation in CCl,, CS, mixtures).
Absent reflections, ~kl/ when h+k is odd; space group

is C2/m (No. 12); absorption coefficients for X-rays,

#(Cu Kx)=76-33 em™!, (Mo K«)=8:67 cm™*,

The intensity data were taken with Cu Ka (1=1-5418
A) radiation using a Weissenberg camera in the equi-
inclination geometry. Levels #k0 to hk7 were recorded
on multiple films and intensities were measured by
comparison with a calibrated standard. 40/ and hk2h
films obtained with the precession camera (Mo K«
radiation, 1=0-7107 A) were used for scaling the Weis-
senberg data as well as for measuring the unit cell par-
ameters. The usual Lorentz and polarization factor
corrections were applied. Cylindrical absorption cor-
rections (International Tables for X-Ray Crystallogra-

phy, 1959, sec. 5.3.5.3.) were made. There were 780
observed reflections, 61%; of the total possible on levels
hkO to hk7.

Structure determination

A sharpened three-dimensional Patterson function was
calculated. The space group ambiguity among C2/m,
C2, and Cm as well as an unusual occupancy of special
positions complicated the structure solution. The latter
effect resulted in the superposition of certain carbon—
carbon vectors leading to peak heights in the Patterson
function comparable to those of the heavy atom inter-
actions. Inspection of the vector map and analysis of
the possible special positions available for the heavy
atoms in the three space groups finally yielded a trial
structure in space group C2/m. This model placed the
centers of the four molecules in two sets of twofold
special positions: 2(a) (000; 1, 1, 0) and 2(c) (00 ; 3,
4, %), each of point group symmetry 2/m. Fig.1 gives
the numbering scheme for the asymmetric unit and the
caption summarizes the atomic occupancy of special
positions. A three-dimensional Fourier map, phases
calculated from chlorine atom contributions alone,
yielded trial positions for all of the carbon atoms and
the structure was refined using a full-matrix least-
squares analysis.

Refinement was based on F, and the quantity mini-
mized was the weighted R index, R=(Zw(Fo—|F.|)?/
ZwF3)®, Scattering factors for carbon and chlorine

atoms were taken from International Tables for X-Ray
Crystallography (1962, p. 202).

Five cycles of refinement using 400 selected reflec-
tions with unit weights and individual isotropic tem-
perature factors reduced the usual R index (R=
2 (Fo—|Fel)/ X Fo) from 24-4 to 16-0%;. After five more
least-squares cycles in the same mode on the full com-
plement of observed data, 780 reflections, the R value
converged to 19-7%4. The ratio of observations to par-
ameters was about 20. At this point, the weighting
scheme was changed to one based upon standard devia-
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tions: ¢=0-15 F, for all F,. Four more cycles incor-
porating anisotropic thermal parameters completed the
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Fig.3 shows the dimensions of molecules 1 and 2.
Distances are uncorrected for thermal motion. The
standard deviations as computed from the least-squares
equations range from 0-01 to 0-03 A for bond lengths
and from 06 to 1-2° for the bond angles. With the

Molecule 1

exception of the bond angles at the tetrahedral carbon
atoms, there are no significant differences between the
molecules; the dimensions of the outer rings do not
differ within experimental error from those of benzene.
The average of the three independent carbon—chlorine

Molecule 2

Fig.1. Numbering of independent atoms in the two crystallographically independent molecules. The pair as drawn corresponds
in orientation to dovetailed pairs in Fig.2. In molecule 1 (center at 0,0,0), the chlorine atoms and attached carbon atoms lie
in the y=0 mirror plane; i.e. Cl(1)-1, Ci(2)-1, C(4)-1 occupy special positions 4(/) (x,0,z). In molecule 2 (center at 0,0,%),
the tetrahedral carbon atoms lie on the 0,y,4 line, i.e. C(4)-2 occupies special position 4(k) (0,y,%).

a
\
\
\
\
\
\

Molecule 1 Molecule 2
Fig. 2. Packing arrangement of the four molecules in the unit cell.
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bond distances is 1-81 A as compared with the ex-
pected value of 1-77 A (International Tables for X-Ray
Crystallography, 1962). The bond angles involving
chlorine atoms tend to be smaller than the tetrahedral
value; not unexpectedly in view of the central ring
angles of 117° and 119°. The composite molecule
shown in Fig.4 is obtained by averaging the benzene
ring dimensions as well as corresponding dimensions
on both molecules. Average deviations, computed for
cases where more than two independent values are
available, are given for purposes of comparison with
the standard deviations of Fig.3. Corresponding tetra-
hedral bond angles of both molecules are shown in
Fig.4 for completeness but the individual values of
109-4° and 106-6° for molecule 1 are significantly dif-
ferent and reflect the twist in this molecule described
below. Also given for comparison are the dimensions
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of 9,10-dihydro-1,2,5,6-dibenzanthracene determined
from two-dimensional Fourier analysis (Iball & Young,
1958).

A review of the literature indicates that the structure
of 9,10-dihydro-1,2,5,6-dibenzanthracene is the only
other quantitative analysis available on a 9,10-satur-
ated anthracene. The parent molecule, 9,10-dihydro-
anthracene, was studied by two-dimensional methods
(Ferrier & Iball, 1954) and preliminary results indi-
cated a folded conformation, i.e. a ‘butterfly’ shaped
molecule with a dihedral angle of about 145°. On the
other hand, the dibenzanthracene is essentially flat,
although a careful analysis by Herbstein (1961) dem-
onstrates that a slightly zigzag model (planes of
naphthalene moieties about 0-18 A apart are related
by a center of symmetry in the molecule) gives a better
fit to the experimental atomic coordinates. Tentative

Table 2. Comparison of observed and calculated structure factors
The three columns of each group refer to k&, F,, and Fe.
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results from a refinement of 9,10-dibromoanthrone
(Silverman & Yannoni, 1963) indicate that the mol-
ecule has a bend of a few degrees in a butterfly con-
figuration.

Herbstein (1959) in some qualitative calculations de-
rived dihedral angles in agreement with experiment
for the two dihydroanthracene molecules mentioned

141(3)

1-36(2)

Molecule 1

(a)
1203
(09

Molecule 1

(b)

STRUCTURE OF 9,9,10,10-TETRACHLORO-9,10-DIHYDROANTHRACENE

above. The unstrained boat form of the cyclohexa-1,4-
diene ring involves two types of hydrogen atom at the
saturated positions, so-called ‘lin’ (equatorial) and
‘perp’ (axial) bonds (Beckett & Mulley, 1955). Sub-
stitution at the equatorial positions in 9,10-dihydro-
anthracene creates tight intramolecular contacts with
hydrogen atoms on the 1,8 and 4,5 positions. In the

1:38(3)

1-38(2

)
\
\313(1)
\
\
\

/
7313(1)

Molecule 2

11956
©7)

Molecule 2

Fig.3. The dimensions of molecules 1 and 2: (a) bond lengths in A, standard deviations in units of 0-01 & in parentheses; (b) bond
angles in degrees, standard deviations in degrees in parentheses.
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case of the dibenzanthracene molecule (Fig.4), there
are already close contacts with the hydrogen atom posi-
tions indicated by asterisks, even without substitution.
These contacts are lengthened as the central ring flat-
tens toward a strained planar conformation and the
minimum potential energy involves a balance of the
two strain conditions. For dibenzanthracene this min-
imum is a dihedral angle of about 180° (Herbstein,
1959). In TCA, because of the greater size of the

(b)

Fig.4. Comparison of the dimensions of the composite mol-
ecule of (@) TCA with (b) those of 9,10-dihydro-1,2,5,6-
dibenzanthracene. For the former, average deviations are
given in parentheses in units of 0-01 A for bond distances
and 1-0° for bond angles.
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chlorine atoms, one would expect a considerably flatter
conformation than that which is observed in 9,10-di-
hydroanthracene. Least-squares planes (Schomaker,
Waser, Marsh & Bergman, 1959) passed through the
carbon skeletons of each molecule verify that both are
essentially planar (Table 3). As a consequence of this
planar configuration, hydrogen atoms, postulated to
lie in the plane at the 1,8,4, and 5 positions participate
in chlorine-hydrogen contacts in the range of 29 A,
only slightly shorter than 3-0 A, the sum of the van der
Waals radii of the two atoms.

The results of Table 3 examined in conjunction
with Fig.2 reveal some interesting packing effects in
the structure. For molecule 2, the equation of the least-
squares plane is —4-207x+9-874z—4-937=0 with all
atoms less than 0-01 A from the plane. The perpen-
dicular to this plane lies in the a—c plane and forms
an angle of 3-6° with the ¢ axis. The four chlorine atoms
of molecule 2 form a rectangle which is parallel to the
b axis (by symmetry) and makes a dihedral angle of
3-8° with the b-c¢ plane, ie. the chlorine grouping
follows quite closely the orientation of the carbon
framework. For molecule 1, the equation of the least-
squares plane reads —5-009x+9-892z=0 with a per-
pendicular lying in the a—c plane at an angle of —1-1°
to the ¢ axis. However, the deviations from planarity
here of up to 0:033 A or 2-5 are systematic and can be
viewed in the following way. The chlorine atoms of
molecule 1, which are restricted to the a—c plane, lie
almost exactly at the corners of a rectangle (not re-
quired by symmetry) whose sides turn out to be aligned
perpendicular and parallel to the c-axis to within a
few minutes of arc. The vector between the tetrahedral
carbon atoms of molecule 1 is at 90-4° to the ¢ axis.
However, similar vectors from atom C(3") to C(3),
C(2") to C(2) and C(1") to C(1) make angles of 87-0,
88-7, and 86-3° respectively with the ¢ axis. The least-
squares plane through one of the outer benzene rings
is —5-174x+9-887z=0 and has a perpendicular which

Table 3. Deviations, 4, (A), from least-squares planes and the number of standard deviations (|4 ,/a ,|) for each atom

Atoms in parentheses (and their symmetry-generated equivalents) were used in determining the least-squares planes. C(1), C(2),
C(3) represent 4 atoms each, C(4) two atoms, for planes passed through the complete carbon skeleton of each molecule. For
the benzene ring plane, C(1), C(2) and C(3) represent 2 atoms each.

Molecule 1 Molecule 2
Atom a4, |4,/o,} Atom 4, 14./0.]
(C(1)-1) 0-003 A 23 (C(1)-2) 0-001 A 0-1
(C(2)-1) 0-007 05 (C(2)-2) —0-009 0-8
(C(3)-1) 0-024 2-4 (C(3)-2) 0-008 09
(CH-1 —0-033 2-5 (C(4)-2) 0-0 by symmetry
CI(1)-1 —1-50 CI(1)-2 1-46
Ci(2)-1 1-41
Molecule 1 - benzene ring
Atom 4, |4,/0,)

(C(1)-1) +0-021 A 1-5

(C(2)-1) +0-017 13

(C(3)-1) +0-012 1-2

C(4)-1 +0-059 45

Cl(1)-1 —1-55

Cl(2)-1 1-37
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makes an angle of —2-1° with the ¢ axis. Deviations
of the benzene ring carbon atoms from this plane are
equal to or less than 1-5 while the tetrahedral carbon
atoms lie +0-06 A or 4-5 away from the plane. The
twist of approximately 2° in the outer rings of molecule
1 is probably responsible for the significant difference
between the two C-C~Cl bond angles for this molecule.

These results can be interpreted as follows. The
rotation of 3-6° about the b axis by molecule 2 with
respect to the chlorine framework of molecule 1 re-
sults in the two types of carbon—chlorine contact
quoted above. Two of the four chlorine atoms on mol-
ecule 1 participate thereby in C~Cl contacts which ap-
proach the sum of the van der Waals radii, 3-5A.
Dovetailed pairs of molecules are farther apart than
they need be (considered as isolated pairs) in order to
allow some interleaving of the hydrogen atoms of the
molecules related by C-centered translations. The
slight twist in molecule 1 helps to accommodate this
interleaving. For example, the contact between the
hydrogen atom on C(1)-1 (position estimated stereo-
chemically) and a chlorine atom on its C-translated
equivalent is 2-85 A, somewhat shorter than the sum

Table 4. R.M.S. displacements, u(R;), along the three
principal axes of the thermal ellipsoid for each atom,
and orientation of the principal axes 1,2,3 with respect
to the ¢, b, and a* axes (pe, pv, and pq« respectively)

Standard deviations (in units of 0-01 A for x and deg. for ¢)
are given in parentheses

Atom R H(R:) Ve b Pa*
Cl(1)-1 1 015(1)A 141 90 51 (2)°
2 024(1) 90 0 90
3 029(1) 51(2) 90 39 (2)
Cl(2)-1 1 020(1) 36 (5) 90 54 (5)
2 026(1) 54 (5) 90 144 (5)
3 033(1) 90 180 90
C(1)-1 1 0192 52 (31) 142 (32) 93 (13)
2 0212 43 (30) 54 (33) 111 (4)
3 044 72 (3) 80 (3) 21 (3)
C(2)-1 1 019() 23 (12) 91 (32) 113 (15)
2 021(Q) 97 (33) 21 (5) 110 (15)
3 035(1) 68 (4) 69 (5) 31 (4)
C(3)-1 1 018 (2) 23 (8) 104 (17) 109 (12)
2 021 85 (17) 26 (15) 115 (13)
3 025(1) 67 (8) 69 (11) 32 (1)
C(4)-1 1 019 (3) 130 (23) 90 40 (23)
2 0232 90 0 90
3 023(2) 40 (23) 90 50 (23)
CI(1)-2 1 018(1) 135 (2) 133 (2) 82 (2)
2 025(1) 91 (3) 101 (3) 169 (3)
3 030(1) 46 (2) 135(2) 83 (3)
C(1)-2 1 022() 79 (12) 113 (10) 26 (12)
2 027 (2) 135 (60) 54 (54) 66 (17)
3 028(1) 133 (59) 136 (51) 99 (27)
C(2)-2 1 020(3) 30(18) 103 (15) 117 (2D
2 022(2 108 (27) 63 (10) 146 (23)
3 029 (1) 113 (7) 150 (8) 109 (7)
C(3)-2 1 017 (2) 5(® 85 (8) 91 (11)
2 022(1) 89 (11) 117 (28) 153 (29)
3 024(1) 85 (8) 152 (28) 63 (29)
C4)-2 1 017 (3) 29 (15) 90 119 (15)
2 0232 119 (15) 90 151 (15)
3 024 (2 90 180 90

STRUCTURE OF 9,9,10,10-TETRACHLORO-9,10-DIHYDROANTHRACENE

of the van der Waals radii, 3-0 A. Without the twist of
the outer rings, this contact would be still shorter.

R.M.S. components of thermal motion for each
atom along the three principal axes of the anisotropic
thermal ellipsoid as well as the directions of these
axes are tabulated in Table 4.

Molecule 1 exhibits somewhat greater thermal mo-
tion than molecule 2. Atoms CI(1)-1, CI(2)-1 and
especially C(1)-1 have highly anisotropic thermal mo-
tion. The directions of the principal axes for the
chlorine atoms are physically reasonable. Directions
of minimum motion are along C~Cl bonds and direc-
tions of high thermal motion are perpendicular to
C-Cl bonds suggesting vibrational modes which alle-
viate the CI-Cl repulsions (Cl-Cl intramolecular con-
tacts are 291 and 2:92 A; sum of van der Waals radii
is 3-6 A). The still greater repulsion of bromine atoms
in 9,10-dibromoanthrone is possibly the cause of the
apparent slight bend in this molecule.

We wish to thank Dr T.K.Mukherjee of this labor-
atory for synthesizing the compound, Mr Peter Con-
nolly for estimation of the X-ray intensities, and Miss
A.Pauline Krukonis for her aid with the analysis. We
are grateful to the following authors for computer
programs used in this analysis: Drs Busing, Martin
and Levy for the least-squares program (ORFLS, 1962)
and the IBM 7090 version of the function and error
program (ORXFE, 1959), Professors Shoemaker and
Sly, and Dr Van den Hende for the Fourier summation
program (ERFR 2, 1962); and to Professor Lipscomb’s
crystallography group at Harvard University for data
processing and Patterson-sharpening programs. All
calculations were done on the IBM 7090.
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